Numerical simulations of non-spherical bubble collapse.

نویسندگان

  • Eric Johnsen
  • Tim Colonius
چکیده

A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic simulation of air bubble implosion using a level set approach

The hydrodynamics of the implosion and rebound of a small (10 lm diameter) air bubble in water was studied using a three-dimensional direct numerical simulation (DNS). To study this problem, we developed a novel stabilized finite element method (FEM) employing a combination of ghost fluid and level set approaches. This formulation treats both the air and water as compressible fluids. Using this...

متن کامل

Numerical Computation of Shock Waves in a Spherical Cloud of Cavitation Bubbles

The nonlinear dynamics of a spherical cloud of cavitation bubbles have been simulated numerically in order to learn more about the physical phenomena occurring in cloud cavitation. A finite cloud of nuclei is subject to a decrease in the ambient pressure which causes the cloud to cavitate. A subsequent pressure recovery then causes the cloud to collapse. This is typical of the transient behavio...

متن کامل

Modelling cavitation erosion using fluid-material interaction simulations.

Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intima...

متن کامل

On a differential equation for a gas bubbles collapse mathematical model

In this paper we present a mathematical model for estimate the collapse time of a gas bubble in a vane of a oil gerotor pump. This amount of time cannot be greater of the total time spent by the pump for filling and then emptying out a vane in a single revolution, otherwise there is a loss of lubrication between internal and external gears. We assume that oil is incompressible and viscous, the ...

متن کامل

NON-SPHERICAL COLLAPSE OF AN AIR BUBBLE SUBJECTED TO A LlTHOTRIPTER PULSE

Seattle, Washington 98105 [email protected] In order to better understand the contribution of bubble collapse to stone comminution in shockwave lithotripsy, the shockinduced and Rayleigh collapse of a spherical air bubble is investigated using numerical simulations, and the free-field collapse of a cavitation bubble is studied experimentally. In shock-induced collapse near a wall, it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of fluid mechanics

دوره 629  شماره 

صفحات  -

تاریخ انتشار 2009